skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tao, Wenjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A redox‐neutralS‐nitrosation of thiol has been achieved at a dicopper(I,I) center. Treatment of dicopper (I,I) complex with excess NO.and thiol generates a dicopper (I,I) di‐S‐nitrosothiol complex [CuICuI(RSNO)2]2+or dicopper (I,I) mono‐S‐nitrosothiol complex [CuICuI(RSNO)]2+, which readily release RSNO in 88–94 % yield. TheS‐nitrosation proceeds by a mixed‐valence [CuIICuIII(μ‐O)(μ‐NO)]2+species, which deprotonates RS‐H at the basic μ‐O site and nitrosates RSat the μ‐NO site. The [CuIICuIII(μ‐O)(μ‐NO)]2+complex is also competent forO‐nitrosation of MeOH. A rare [CuIICuII(μ‐NO)(OMe)]2+intermediate was isolated and fully characterized, suggesting theS‐nitrosation may proceed through the intermediary of analogous [CuIICuII(μ‐NO)(SR)]2+species. This redox‐ and proton‐neutralS‐nitrosation process is the first functional model of ceruloplasmin in mediatingS‐nitrosation of external thiols, with implications for biological copper sites in the interconversion of NO./RSNO. 
    more » « less